
Preprint typeset using LATEX style emulateapj v. 11/10/09

CODES AS INSTRUMENTS: COMMUNITY APPLICATION AND SIMULATION SOFTWARE FOR THE
HARDWARE ARCHITECTURES OF THE NEXT DECADE
Falk Herwig (UVic) and L. Jonathan Dursi (CITA/SciNet)

ABSTRACT
Modern astronomical research requires increasingly sophisticated computing facilities and software

tools. Computational tools have become the fundamental tools to turn observational raw data into
scientific insight. Complex multi-physics simulation codes have developed into tools for numerical
experiments that provide scientific insight beyond classical theory. Canadian researchers need an
environment for developement and maintenance of these critical tools. In particular, the drastically
enhanced complexity of deeply heterogeneous hardware architectures poses a real challenge to using
present and future HPC facilties. Without a national program in astrophysical simulation science
and astronomy application code developement we are becoming vulnerable with respect to our ability
to maximise the scientific return from existing and planned investments into atronomy. In addition,
there are significant industrial/commercial HQP needs that a simulation and application code program
could start to address, if it is properly aligned with academic training opportunities. We outline the
framework and requirements for such a framework for developing Canadian astronomical application
and simulation codes — and code builders. In the US decadal plan process, voices are calling for
similar emphasis on developing infrastructure and incentives for open community codes (Weiner et
al. 2009). We propose funding several small interdisciplinary teams of postdocs, graduate students,
and staff, housed in departments at Universities that have or are about to make a commitment in a
relevant area (e.g. applied math, computational physics, modeling science). These teams can, while
training astronomical and computational HQP, focus on building tools that have been deemed to be
high priorities by the astronomical and astrophysical communities in order to make the best scientific
use of our new computational faciliites.
Subject headings:

1. CODES AS INSTRUMENTS

The Canadian computational landscape has changed
remarkably since the last LRP, and in most ways for the
better; Canadian astronomers now have access to much
larger data and computational power, and there is some
degree of staff supporting these new large facilities (for
an overview, see Dursi et al 2010).

This white paper is singling out a final missing link
and bottle neck that prevents Canadian astronomy and
astrophysics to fully take advantage of the potential of
the new computer age. This missing link is the under-
developed and underfunded state of our simulation and
application software developement efforts. The role of
these activities has internationally long been recognized,
e.g. in the NSF report Computation As a Tool for Discov-
ery in Physics1 that was the result of an expert workshop
almost 10 years ago:

Simply put, we must move from a mode
where we view computational science as an
applied branch of theory to a mode where
its true resource needs as a distinct research
mode are recognized. Concretely, this means
providing support for building the infrastruc-
ture (software) of computational science at
levels commensurate with their true costs,
just as we support construction and opera-
tion of experimental facilities.

We like to employ this metaphor of simulation and

1 http://www.nsf.gov/pubs/2002/nsf02176

application codes as instruments here as well2. The
scientific success of new telescopes depends vitally on
the development of increasingly sophisticated and com-
plex instruments that turn photons collected with large
dishes into meaningful astronomical data. Likewise,
high-performance and super-computers (e.g. at Com-
pute Canada sites) provide cycles (read photons) that
need increasingly sophisticated and complex application
and simulation codes to produce meaningful astronomi-
cal and astrophysical data. Just as the implementation
of AO, multi-object and interferometric technologies are
pushing the limits if instrument building, the accelerated
introduction of increasingly complex hardware architec-
tures pushes code developers to the next edge.

The last decade has seen much needed investments into
the hardware platforms for scientific computing. There
has not been, however, any kind of concomitant increase
in funding for astronomical code development. To em-
ploy once more our metaphor, astronomy is not funding
the instrument builders (read application and simulation
code teams) which will develop and maintain the tools
required to make the best possible scientific use of the
new facilities available to us. The Compute Canada con-
sortia have support staff (technical analysts) that can
be thought of as support astronomers at observational
facilities; they (including LJD) are available to help an
astronomer make use of the facilities given the instru-
ments that are available; but they have neither the time,

2 Of course, as all metaphors, this one has it’s clear limits, and
we apologize to the true instrument builders for simplifying their
terrific and most important work for this illustration purpose.

http://www.nsf.gov/pubs/2002/nsf02176


2 Herwig & Dursi

resources, nor, in general, the expertise to create — or
just significantly participate in creating the — new in-
struments from scratch for the astronomer to use.

The way this plays out in practice is that the technical
analysts can help astronomical researchers take existing
simulation or data-analysis codes and port them to the
new platforms, including doing significant work on par-
allelizing the code to make use of new, large computers
or suggesting more efficient algorithms for already work-
ing programs. However, in general they will not have
any domain experience in the astronomical or astrophys-
ical problem at hand; while they can make it run faster
and/or in parallel, they will have no knowledge as to
whether the code works well in the first place, will con-
tinue working for larger problems, provides accurate an-
swers, or is even considering the correct questions.

2. WRITING PROFESSIONAL SCIENTIFIC CODE
REQUIRES PROFESSIONALS

So, what is so different about simulation and appli-
cation code building compared to regular research ac-
tivities of NSERC discovery grant funded researchers?
To build scalable, efficient simulation or data analysis
code for science requires expertise in the domain science
and the mathematical techniques used therein; exper-
tise in the basics of numerical methods (approximation
with finite precision, domains of stability, convergence
and consistency, validation and verification), knowledge
of the current state of the art for numerical methods for
all the mathematical operations to be used in the code
(this is non-trivial; even something as straightforward
as choosing pseudo-random numbers, bread-and-butter
for any Monte Carlo method, become non-trivial when
looking at large numbers of samples, and there is a large
literature on the subject); knowledge of computer archi-
tectures, necessary for efficient computation (cache archi-
tecture and performance; vectorization/SSE operations);
techniques for efficient parallel computation (shared- and
distributed-memory, and increasingly heterogeneous and
hybrid architectures such as GPGPU, IBM Cell), and ba-
sics of software engineering (unit testing; version control;
software architecture; refactoring). This represents a vol-
ume and complexity of expertise which requires a team
effort and sustained support to build-up. In particular,
some of these capabilities by themselves clearly fall out
of the reward model that is typically employed in astron-
omy (i.e. an essential but more technical contribution to
a large and complex code project will get less than its
in the peer-reviewed scientific paper reward model, e.g.
technical aspects are often defered to an appendix).

Of course, to write ’one-off’ proto-type code of rela-
tively simle tasks does not require this level of knowl-
edge; but we argue that having many scientists cobble
the same sort of things together independently, and with
varying degrees of quality and often making less efficient
use of the latest parallel architecture, is simply not the
best use of resources of the Canadian astronomical com-
munity. From the experience of looking at such code as
technical analysts at the Compute Canada consortia, it
is not unusual to find easy speed-ups of code by factors
of several due to improving cache use, or to find obvi-
ous bugs that by pure luck have (hopefully) not affected
numerical results to date. When such bugs do occur, of
course, they can be disastrous (eg , Brunini 2006; Petsko

2007; Hall and Salipante 2007).

3. IMPORTANCE OF COMMUNITY CODES TO
ASTROPHYSICS MODELING

But when quality software is developed and publicly
released, and subsequently earns the trust of the com-
munity, it can start a chain reaction which greatly con-
tributes to simulation and theory research in its sub-
field. The MESA stellar evolution code which is presently
pushed forward by a small team around a privately
funded master programmer (Bill Paxton) is an exam-
ple (Paxton etal, in prep).3 Over time such community
codes become used by a growing community of scientists.
Any serious bugs get shaken out, or, more colloquially,
“Given enough eyes, all bugs are shallow”, Raymond
(1999). These codes are then increasing the efficiency of
groups in solving science problems, thereby addressing
some of the often stated needs of observers to have bet-
ter models and simulations at their disposal to interprete
observations. The community code becomes a platform
from which to build extensions by adding new physics or
methods, and these extensions in turn get fed back to
the rest of the community.

The resulting impact of community codes can be char-
acterized by looking at their use. One of the authors
keeps track of computational astrophysics, particularly
simulation, papers on astro-ph4; in the four years from
1 Apr 2006 to 30 Mar 2010, there were approximately
3,435 of these. Using the ADS, one can count the cita-
tions of the code papers of some of the most-used com-
munity codes during that same period of time; these cita-
tions usually represent papers that use the code. Citation
counts include Gadget2 (715; Springel 2005), Cloudy
(483; Ferland et al. 1998), FLASH (235; Fryxell et
al. 2000), PKDGRAV (98; Stadel 2001), Ramses (95;
Teyssier 2002), Zeus (59; Hayes et al 2006), and Enzo
(42; O’Shea et al., 2004). There are some issues with
comparing these numbers; the simulation paper count
may be an undercount (but even so, it also includes non-
simulation papers, such as new algorithms for data analy-
sis); in addition, the citations of the code papers certainly
overcounts, but probably only modestly, the number of
papers using the codes. If we nonetheless take these num-
bers at face value, the implication is that the top three
community codes are responsible for 40% of simulation
papers during that period, rising to 50% if one includes
the next three. Given the diversity of objects and physics
that comprise the field, this is remarkable, and remains
so even if a more careful accounting adjusts the percent-
ages downwards somewhat.

That trusted community codes are so often used should
not be surprising; once the code becomes accepted within
the community as a good way to do certain types of simu-
lations, it becomes a go-to approach for researchers; and
in fact the very existence of a well-tested, freely avail-
able code to perform a certain task may encourage cer-
tain lines of research; whereas other possibly equally or
more important research directions simply languish, lack-
ing a comparably available tool. Experience also shows
that once a certain seed investment has been made into a
computational tool eventually community driven growth

3 http://mesa.sourcforge.net
4 http://www.cita.utoronto.ca/∼ljdursi/thisweekcomp/

http://mesa.sourcforge.net
http://www.cita.utoronto.ca/~ljdursi/thisweekcomp/


Codes as Instruments: Community application software for the hardware architectures of the next decade 3

becomes self-perpetuating.
Therefore, building or even seeding a successful com-

munity code can actually shape research patterns; it pro-
vides a simulation tool that is not only less work for a
researcher than stopping other projects to write their
own, but the result is generally of higher quality. When
it comes to research tools, “Better, for cheaper” should
be something that as a matter of policy the astronomical
community in Canada should encourage, and fund.

4. IMPORTANCE OF COMMUNITY CODES TO
ASTRONOMICAL DATA ANALYSIS

For the same reasons, community codes play an
important role on the observational side of astro-
nomical research. As pointed out in a white paper
for the US decadal survey (Weiner et al. 2009),
several software packages or libraries that have been
released to the community “have enabled easily as
much science as yet another large telescope would
have, at considerably lower cost”. These can take
the form of complete data reduction packages such
as the venerable IRAF (http://iraf.noao.edu/),
AIPS (http://www.aips.nrao.edu/) or MIRIAD
(http://www.atnf.csiro.au/computing/software/
miriad/); photometry and analysis packages
such as DAOPHOT, by Peter Stetson at DAO
(http://www.star.bris.ac.uk/∼mbt/daophot/),
SExtractor (http://sextractor.sourceforge.net/)
and GALFIT (http://users.obs.carnegiescience.
edu/peng/work/galfit/galfit.html) and various
libraries used to build packages such as FITSIO, PG-
PLOT, the IDL Astronomy Library, and IDLUTILS.
Many of these packages are used so routinely that it is
almost impossible to track their usage in the literature.

5. INDUSTRUAL/COMMERCIAL IMPLICATIONS

Systematically building up and nurturing a Canadian
simulation and application code capabilty in astronomy
would likely have HPQ training implications beyond the
immediate needs of the astronomy community. Some of
our theory and simulations graduate students and post-
docs end up using their computational skills in industry
and commerce. Again, employing the instrument build-
ing metaphor, the skill and training of code building and
maintenance has similar potential for technological im-
plications for the private sector as has the development of
high-tech skills and capabilities that are viewed as a de-
sired and essential side effect of many instrument build-
ing funding decisions.

From the exemplarary experience of one post-doc at
UVic we know that scientists with experience in math-
ematical modeling and numerical simulations of multi-
physics processes are a thought after human resource in
research and development groups of companies that need
to solve problems or use methods similar to those tradi-
tionally met in physical sciences, such as astrophysics.
Examples of companies that this particular post-doc in-
terviewed with include Maplesoft (a software company
in Waterloo, ON), which has a contract with Toyota
for mathematical modeling of cars. They needed a per-
son who could solve a complex system of PDEs using
their computer algebra software product Maple (simi-
lar to Mathematica). Automotive Fuel Cell Cooperation
(AFCC) company in Vancouver wanted to hire a sim-

ulation scientist to model various physical and electro-
chemistry processes in hydrogen fuel cells that they are
developing for cars in cooperation with Ballard, Daim-
ler, and Ford. General Fusion Inc. in Vancouver was
looking for a computational plasma physicist who would
perform magneto-hydrodynamics simulations to model
collision and interaction of two compact plasma config-
urations for a future thermonuclear reactor. Similar po-
sitions were recently advertised, e.g. with Atomic En-
ergy of Canada Limited (AECL) and U.S. Steel. Another
post-doc, who worked in the same simulation group at
Lost Alamos as one of the authors was hired by a German
subsidiary of Siemens to build a small research group in
hydrodynamic simulations of industrial fans. These ex-
amples show that the same technological and industrial
benefits that are commonly associated with instrumen-
tation engeneering projects can also be associated with
appropriately funded and organised simulation code de-
velopement and maintenance projects. In fact, we argue
that an astrophysics program in this area could address
the underserved human resource needs of some Canadian
high-tech companies in the coming decade.

6. THE INCREASING DIFFICULTY OF DEVELOPING
SCALABLE CODES FOR LARGE DATA/LARGE

COMPUTING

Building a high-quality, correct, reliable piece of scien-
tific software that others can use for their problems, even
for running just on the desktop is difficult. Increasing a
problem’s complexity by 25% can increase the complex-
ity of the software to solve it by a factor of two (Wood-
field 1979). Building software to be reusable by others
is three times more time consuming than to whip out
something that will only be used once (Thomas, Delis &
Basili 1997) – but if the software is to be used by more
than three people, it is obviously worth it. Similarly,
40%–80% of software development cost is maintenance
(Boehm 1973). But for a piece of software to be useful
to the community, it must be general enough to be useful
for many problems, reusable, and maintained.

Truly cutting edge scientific software that can take ad-
vantage of modern parallel computers, however, is still
harder. “There is widespread agreement that trends in
both hardware architecture and programming environ-
ments and languages have made life more difficult for sci-
entific programmers” (Graham, Snir, & Patterson 2004).

The most obvious increase in complexity is in par-
allel computing. The primary library for program-
ming in parallel on large clusters is with MPI (http://
www.mcs.anl.gov/research/projects/mpi/), but this
is an extremely difficult way to program complex parallel
codes. Programmers who are new to parallel program-
ming demonstrate a wide spread in development times
(a factor of 10!) in developing parallel MPI code from
scratch, even at a fixed level of quality; the spread be-
tween novice and experienced programmers is presum-
ably even greater;(Almeh 2007). Even in a mature, par-
allelized code, the MPI sections require constant work;
apparently roughly 25% of the maintenence of FLASH is
done on the MPI parts (Hochstein, Shull, & Reid 2008).

For simple problems, OpenMP (http://openmp.
org/), a shared memory approach which is viewed as
much easier than MPI, only takes about 60% less effort
than MPI, at the cost of being impossible to scale to

http://iraf.noao.edu/
http://www.aips.nrao.edu/
http://www.atnf.csiro.au/computing/software/miriad/
http://www.atnf.csiro.au/computing/software/miriad/
http://www.star.bris.ac.uk/~mbt/daophot/
http://sextractor.sourceforge.net/
http://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html
http://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://openmp.org/
http://openmp.org/


4 Herwig & Dursi

large clusters (Hochstein 2006).
But the true challenge for the coming decade for effi-

cient simulation and application code developement will
be the increasing heterogeneity of computing hardware.
Even now a single compute node may already have 8-32
processing cores, suggesting different parallelization tech-
inques within a node as vs. between nodes. In addition,
accellerators such as GPUs within a node are becoming
more common. The IBM Cell architecture is another
example of hybrid compute nodes.5 This shift to het-
erogeneous architectures makes programming even more
difficult – for instance, the second biggest computer in
the world has no fewer than three types of processors,
using it to its fullest requires use of all three.

None of these hurdles are insurmountable, but it is
becoming simply impossible for a scientist to be at the
same time at the leading edge of all the aspects of simu-
lations science; or to write high-quality, correct, reliable,
software from scratch for the current crop of supercom-
puters while staying on top of the discipline area. To
employ once more our instrument metaphor, we have to
implement in the computing arena the type of collabora-
tion and division of labor that is well established between
observers and instrument builders in astronomy.

While in some other countries the era of every re-
searcher using home-grown software is mostly gone (take
for example the US with its long established system of na-
tional supercomputing centers that are at the same time
nucleation points innovative code developement, comple-
mented by the DOE SciDAC programs and previously
the ASC program). Canada should follow those exam-
ples and enter an era of professionalization of the sci-
entific software community, where scientists can rely in-
creasingly on community codes.

7. CASE STUDIES: WHAT IT TAKES TO DEVELOP A
COMMUNITY CODE

To understand what is involved in developing a com-
munity code, we briefly discuss the development history
of the top three simulation codes by citations, listed
above. The three are very different types of code with
quite different development histories, and distribution
moels, but all demonstrate that to build a successful
community code requires amounts of work measured
in person-years, not -months; extensive documentation;
continuous maintenance; test cases so that a user can
ensure that it is working properly on their system; and
that the code must have been written to address a real
need to perform specific research.

7.1. Gadget 2
Gadget 2 is a SPH code which evolves ideal-gas hy-

drodynamics under the effect of self-gravity, as well as
gravity-only dark matter dynamics. It includes two grav-
ity solvers – one purely tree-based, and one that also in-
volves a (possibly periodic) mesh. It consists of 12,500
source lines of code (eg, omitting comments and blank
lines), and comes with 46 pages of documentation, the

5 Recently, Los Alamos National Lab in collaboration with IBM
have demonstrated how the future of parallel computing could look
like when they combined 5 different architectures to work together
in one hydrodynamic simulation code http://www.youtube.com/
watch?v=-GeB1HOt U0.

30-page code paper, and data for most of the test-cases
covered in the paper.

Gadget 2 was developed essentially solely by Volker
Springel, at the time at the MPA in Garching, and was
written for his own requirements in performing galac-
tic and cosmological simulations. The coding, testing,
and writing of documentation required several person-
years of labour, by someone already well experienced
in the area – the original Gadget-1 was produced dur-
ing Springel’s PhD work. The development was sup-
ported by the unusually independent and long-term na-
ture of postdocs at CfA and MPA. As is often the case,
the author published several results with Gadget 2 be-
fore widely releasing the code, allowing a balance be-
tween publicly releasing the code and still benefiting sci-
entifically from the development (eg, not get ‘scooped’
by users of the code he wrote). Gadget is distributed
with source code for reading results into various pack-
ages (IDL, sm, VTK) for analysis, and recently a 3rd
party package has started to include support for visual-
izing results.

Gadget has a ‘one-way’ code distribution mechanism;
the more or less complete Gadget-2 code was released
when completed, and it has been updated only with very
minor bug fixes since. A community of users has built up
around it; many users of Gadget add their own subgrid
models or other physics, sometimes making this more
widely available to the community, but usually not – this
is usually due to proprietary concerns, but also because
of the time required to maintain and support publicly-
released code. The author continues with his collabo-
rators to develop a proprietary version with additional
physics. There is a community mailing list where users
post questions, which are often answered by other users.

7.2. Cloudy
Cloudy is a spectral synthesis / photoionization sim-

ulation code: the spectrum of material of a given
density/composition/temperature profile is calculated.
Cloudy has been actively developed since 1978; it started
started in early versions of FORTRAN, and has since
been rewritten in C++. It currently consists of 142,000
source lines of code, and 500 pages of documentation
that extends into four volumes. In addition to the usual
amount of work that goes into a scientific code, the
Cloudy developers have also by necessity spent a great
deal of time curating a database of atomic rates and line
widths that are essential inputs to the code. Tending to
and maintaining this database has required a great deal
of work, and the developers provide it in a format which
can be used by other codes fairly easily.

Estimating the amount of effort that has gone into a
code over three decades is almost impossible, but sim-
ple software engineering models (Wheeler 2004) suggest
that several dozens of person-years would be required,
which seems immediately plausible given the length of
time and the number of developers involved; there are
typically three or so active developers at any given time.
The NSF has funded cloudy development for 29 years
continuously; this sort of stable funding for computa-
tional work is almost impossible to imagine in the current
Canadian astrophysics funding model.

The Cloudy community is centred around a wiki and
a web-forum where the developers and knowledgeable

http://www.youtube.com/watch?v=-GeB1HOt_U0
http://www.youtube.com/watch?v=-GeB1HOt_U0


Codes as Instruments: Community application software for the hardware architectures of the next decade 5

users answer user questions. It is distributed with its ex-
tensive documentation and several test suites, and tools
for analyzing and visualizing results. Suggested updates
are accepted from the community, and incorporated into
the code distribution. New releases, involving significant
rewrites are released infrequently (every several years)
but versions, involving more minor changes, and ‘hot-
fixes’ — urgent patches — are released more often.

7.3. FLASH
FLASH is a multi-physics adaptive mesh hydrodynam-

ics code, including self-gravity through multipole and
multigrid solvers, hydrodynamics (several solvers), MHD
(several solvers), several equations of state including for
degenerate matter, optically thin heating/cooling, nu-
clear reactions. The FLASH code consists well over
400,000 source lines of code, and a 330 page manual. The
user community is arranged around a web page and sev-
eral mailing lists, and the FLASH centre gives tutorials
which are posted online. A test suite is run on the code
daily, identifying problems as soon as they are checked
into the code base. The FLASH-centre internal version
of the code contains test versions of solvers which are not
publicly released; typically the internal users publish us-
ing the solvers before releasing them at large. An anal-
ysis/visualization package based on IDL is distributed
with the code, and an open-source visualization/analysis
package is available separately. The FLASH code is not
as freely available as the other two codes on this list;
its funding agency (the US DOE NNSA) requires users
who want access to the code to sign a license agreement
forbidding re-distribution and to fax the result back in.
Users from countries the US considers ‘unfriendly’ can-
not get access to the code.

FLASH was funded as part of a larger research project,
and it is difficult to disentangle the costs and con-
tributions of the code development as apart from the
rest of the project. However, well over two dozen
people have committed significant portions of code to
the code base over the 10-year period of development,
which in turn began with existing code bases from
PROMETHEUS, PARAMESH, and microphysics pack-
ages previously written by original FLASH team mem-
bers. The numerical methods for hydrodynamics (i.e. the
piece-wise parabolic method, PPM, ¡ Colella & Wood-
ward 1984) preceeds even 20 years back. Over most of
the official ten year period of funding of the project, at
least two or three people were employed full time to de-
velop the code and associated tools; thus, not including
the scientists who contributed physics solvers, this al-
ready constitutes 20-30 person years of supported effort.

FLASH is continuously updated with bug fixes, and
new solvers; only FLASH team members can add code.
Typically the developers have a chance to test, and then
publish with, new solvers before they are incorporated to
the main distribution; new versions of the FLASH code
are released every year or so. Very occasionally new code
is accepted from the community, but this is typically from
close collaborators. Many users have added their own
solvers for, eg, radiative transport; but as with Gadget,
these are very seldom publicly released.

7.4. Commonalities

We see that for a community code to be successful, it
needn’t be especially large; the development team size
can vary, as can the distribution method and the fre-
quency (if at all) of updating the code. All that seems to
be required is that: the code be high quality; moderately
easy to use and understand, including having appropri-
ate documentation; come with tests to make sure it is
installed properly; and come with all the tools needed to
perform the necessary workflow (eg, create initial condi-
tions, visualize/analyze results). Most importantly, how-
ever, the code must address a real research need of a
broad community, and be of high quality; and high qual-
ity means supporting person-years of effort. These are
for future projects person-years involving different per-
sons in a team with a combination of capabilities and ex-
pertiese as described above. Such teams can only work
with the required stability if they are matched with a
corresponding funding instrument.

8. A CODE PROGRAM FOR ASTRONOMY

Several ways are conceivable to start to remove the
present limitations in Canadian simulation and applica-
tion code developement and maintenance. Whatever the
instrument, we recommend the following three-part mis-
sion: to (a) build up the simulation and data analysis
capability that is needed to take full advantage of the in-
creasing fidelity of HPC; and (b) enable large-scale appli-
cation code development, maintenance and user support,
(c) provide the Canadian astronomical community with
the software it needs, directed through a broad advisory
and consultation program.

The result of such a program would be highly qual-
ified (and widely employable) personnel in the increas-
ingly important areas of simulation science and large-
scale analytics, and software that serves the needs of the
Canadian astronomical community. A specific plan for
executing such a program would be to fund 1-2 teams in
year one each involving 5-7 interdisciplinary members,
from undergraduate and graduate students to postdocs
and small buy-out for a faculty team leader, preferably
at an institution which already has a relevant accademic
program; this would be a competitively allocated pro-
cess. Over several years, this process would ramp up to
3-5 teams across Canada. These teams would generate
codes with support for the duration of the program, in-
cluding documentation and user support, to be deployed
on Compute Canada systems. They would focus their
work on things that are not readily available from other
sources, just as instrument teams propose projects to
be decided on through community consultation. There
would be recompetition every five years with the inten-
tion to provide competitive continuity. The code teams
and user groups could be loosely joined by some national
virtual institute, and if successful this strategy may serve
as a template to be employed by other disciplines. Be-
sides the immediate benefits of software development and
training, this would help lay out the pathway to aca-
demic, scalable peta-scale computing in the next decade.

9. CONCLUSIONS

In this white paper we describe the role of simulation
and application code developement and maintenance as
a criticial component in the national astronomy and as-
trophysics landscape. Presently this component is un-



6 Herwig & Dursi

derdeveloped. This situation poses a risk for the healthy
progression of the field in the next decade. It will take the
concerted effort of researchers, teachers and practitioners
on the ground as well as changes to the funding environ-
ment in order to address this situation. Over the past
decade an important step has been made with funding

priorities for computational hardware. These develope-
ments have to be sustained and need to be complemented
now by comparatively modest investments in a science
oriented systematic software development program. The
benefits of such a program would reach far beyond the
immediate needs of the astronomy community.

REFERENCES

Weiner, B. et al. 2009. “Astronomical Software Wants To Be
Free: A Manifesto”, In Astro2010: The Astronomy and
Astrophysics Decadal Survey, arxiv.org:0903.3971.

Dursi, L.J. et al 2010, Computing, Data, and Networks LRP2010
Whitepaper,
http://casca.ca/lrp2010/Docs/LRPReports/CDandN WP.pdf.

Colella, P. & Woodward, P. R. 1984, Journal of Computational
Physics, 54, 174

Compute Canada Midterm Report,
https://computecanada.org/?pageId=887

Brunini, A. 2006. “Retraction: Origin of the obliquities of the
giant planets in mutual interactions in the early Solar System”.
Nature 443, 1013. doi:10.1038/nature05298.

Petsko, G., 2007. “And the second shall be first”. Genome
Biology, 8:103 doi:10.1186/gb-2007-8-2-103.

Hall BG, Salipante SJ, 2007. “Retraction: Measures of Clade
Confidence Do Not Correlate with Accuracy of Phylogenetic
Trees”. PLoS Comput Biol 3(7): e158.
doi:10.1371/journal.pcbi.0030158.

Raymond, Eric S., 1999. The Cathedral & the Bazaar . O’Reilly.
ISBN 1-56592-724-9 .

Wheeler, D., 2004. “More than a Gigabuck: Estimating
GNU/Linux’s Size”, http://www.dwheeler.com/sloc.

Springel, V., 2005. “The cosmological simulation code
GADGET-2”, MNRAS 364, 1105-1134.

Ferland, G. J., et al., 1998. “CLOUDY 90: Numerical Simulation
of Plasmas and Their Spectra”, PASP 110, 761-778.

Fryxell, B. et al., 2000, “FLASH: An Adaptive Mesh
Hydrodynamics Code for Modeling Astrophysical
Thermonuclear Flashes”, ApJSS 131:1, 273-334.

Stadel, J. G., 2001. “Cosmological N-body simulations and their
analysis”, Ph.D. thesis, University of Washington.

Teyssier, R., 2002. “Cosmological hydrodynamics with adaptive
mesh refinement. A new high resolution code called RAMSES”,
A&A 385, 337-364

Hayes, J. C., et al., 2006. “Simulating Radiating and Magnetized
Flows in Multiple Dimensions with ZEUS-MP”, ApJSS,
165:188:228

O’Shea, B. W., et al., 2004. “Introducing Enzo, an AMR
Cosmology Application”, eprint arXiv:astro-ph/0403044

Woodfield, S.N. (1979). “An experiment on unit increase in
problem complexity”, IEE Transactions on Software
Engineering, 5:2, p.76–79.

Thomas, W.M., Delis, A. & Basili, V.R. (1997). “An analysis of
errors in a reuse-oriented development environment”, Journal
of Systems and Software 38:3 pp 211-224.

Boehm, B.W. “The high cost of software”. In Proceedings of
Symposium on High Cost of Software, Monterey, Calif., 1973,
pp. 27–40.

Graham, S.; Snir, M. & Patterson, C.A. (2004),“Getting Up To
Speed: The Future of Supercomputing”, Technical report,
[U.S.] National Research Council.

Almeh, R., 2007. “Investigating the effects of novice HPC
programmer varations on code performance”. M.Sc. thesis,
University of Maryland, College Park.

Hochstein, L., 2006. “Development of an empiral approach to
building domain-specific knowledge applied to high-end
computing”. Ph.D. thesis, University of Maryland, College
Park.

Hochstein, L. and Shull, F. and Reid, L.B. (2008). “The role of
MPI in development time: a case study”, in Proceedings of the
2008 ACM/IEEE conference on Supercomputing, IEEE Press,
pp. 1–10.

http://arxiv.org/abs/0903.3971
http://casca.ca/lrp2010/Docs/LRPReports/CDandN_WP.pdf
https://computecanada.org/?pageId=887
http://dx.doi.org/10.1038/nature05298
http://genomebiology.com/2007/8/2/103
http://dx.doi.org/10.1371/journal.pcbi.0030158
http://www.dwheeler.com/sloc
http://adsabs.harvard.edu/abs/2005MNRAS.364.1105S
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998PASP..110..761F
http://adsabs.harvard.edu/abs/2000ApJS..131..273F
http://proquest.umi.com/pqdlink?Ver=1&Exp=04-17-2015&FMT=7&DID=725934981&RQT=309&attempt=1&cfc=1
http://adsabs.harvard.edu/abs/2002A%26A...385..337T
http://adsabs.harvard.edu/abs/2006ApJS..165..188H
http://arxiv.org/abs/astro-ph/0403044
http://books.google.ca/books?id=Llhr49iPJNIC&lpg=PP1&ots=T-iULxasyF
http://hdl.handle.net/1903/7783
http://hdl.handle.net/1903/3797

	Codes as Instruments
	Writing professional scientific code requires professionals
	Importance of community codes to astrophysics modeling
	Importance of community codes to astronomical data analysis
	Industrual/commercial implications
	The increasing difficulty of developing scalable codes for large data/large computing
	Case Studies: What it takes to develop a community code
	Gadget 2
	Cloudy
	FLASH
	Commonalities

	A code program for astronomy
	Conclusions

